

Review

Invasive Insect Species Devastating Crop Production in Tanzania: Implications on Management and Agriculture Resilience

C Busungu¹

Received: 24th June 2024 / Accepted: 07th July 2025

ABSTRACT

Purpose: This study synthesised evidence on the presence, pathways, and impacts of invasive insect species (IIS) on Tanzanian agriculture. With limited consolidated data despite rich biodiversity, the research fills a critical knowledge gap. Its findings aim to inform policy, enhance biosecurity, and support the development of effective IIS management strategies suited to Tanzania's diverse agro-ecological zones and farming systems.

Research Method: AThis study employed a systematic review methodology following PRISMA guidelines to assess the impact of invasive insect species (IIS) on Tanzania's agriculture. A comprehensive literature search in 2024 across multiple databases retrieved 2,186 records, with 134 studies ultimately selected after screening and applying inclusion criteria based on the PICOS framework. Data were drawn from peer-reviewed studies focusing on IIS affecting crops in Tanzania. Both qualitative and quantitative data were analysed to examine invasion pathways, management strategies, yield impacts, and factors influencing the spread of IIS across Tanzanian agro-ecosystems.

Findings and Values: Seven key pathways contribute to the spread of invasive insect species (IIS) in Tanzania: international trade, maritime shipping, air travel, illegal trade, natural dispersal, and climate change. Trade and maritime activities dominate, introducing pests like Prostephanus truncatus. Weak phytosanitary systems also allow spread via air and illicit trade. Climate and natural dispersal support species like Spodoptera frugiperda and Sipha flava. A total of 27 destructive IIS were identified: 52% Hemiptera, 22% Diptera, 15% Lepidoptera, 7% Coleoptera, and 4% Trombidiformes. Pests such as Bactrocera invadens have caused export restrictions. This marks Tanzania's first systematic review on IIS threats and management gaps.

Keywords: Destructive life cycles, Invasive insect species, Management strategies, Tanzania, Yield losses

INTRODUCTION

Tanzania ranks as the 13th largest country in Africa and the 31st largest globally, encompassing an extensive area of about 947,303 square kilometres (URT 2013, NBS 2023). Since its establishment in 1964, Tanzania has witnessed a remarkable population surge, growing over sixfold from around 11.7 million in 1965 to more than 62 million in 2022 (NBS 2023). While rural habitation has historically

dominated, constituting about 70% of the population, this proportion has experienced a gradual decline since at least 1967 (NBS 2023).

https://orcid.org/0009-0009-8107-7918

¹Department of Crop Science and Beekeeping Technology, College of Agricultural Sciences and Food Technology, University of Dar es salaam, P.O. Box 35091, Mlimani, Dar es salaam, Tanzania.

^{*}busungu.constantine@udsm.ac.tz

Tanzania's geographical expanse encompasses a rich mix of diverse terrains, including various soils, lakes, rivers, oceans, mountains, plateaus, and a mosaic of climatic conditions ranging from equatorial, tropical, subtropical, deciduous, to semi-desert climates. This immense diversity renders Tanzania one of the world's richest countries in terms of mega-biodiversity, hosting six out of the 25 most renowned biodiversity hotspots globally (BIEP 2024). Additionally, an impressive 40% of Tanzania's land surface is allocated to forest, wildlife, and marine protected areas, underscoring the nation's commitment to conservation efforts (Busungu 2021).

Agro-ecologically, intricately Tanzania is with 63 divided. minor agro-ecological zones and 7 major agro-ecological zones identified (De Pauw 1983, Mkonda 2021). This complex topography, coupled with its diversified climate and vegetation, creates an environment conducive to various life forms, including both indigenous and invasive species. The agriculture sector forms the bedrock of Tanzania's economy, contributing an average of 29.5% to national GDP from 2013 to 2022 (NBS 2023). Furthermore, this sector plays a pivotal role in employment, absorbing approximately 77.5% of the workforce and supporting the livelihoods of over 70% of the population (URT 2013, NBS 2023). However, the intensification of agriculture has necessitated the importation of improved seeds, planting materials, and other agricultural inputs from other countries. Similarly, Tanzania relies on imports for crops such as wheat, maize, rice, oils, soybeans, and fruits due to consumption levels surpassing domestic production capacities, partly as a result of the dependence on rainfed agriculture.

This exchange of exports and imports, coupled with lax regulatory frameworks and inadequate phytosanitary control mechanisms, has heightened Tanzania's vulnerability to the infiltration of Invasive Alien Species (IAS). IAS are non-indigenous organisms that have been introduced into environments outside their natural range, often causing detrimental impacts to the new habitats they invade. These impacts include economic losses, environmental

degradation, and ecological disruptions (Abass et al. 2013, Rudolfo et al. 2021, Venette & Hutchison 2021, Ndlela et al. 2022). Since independence, the number of IAS occurrences in Tanzania has steadily increased (Lyimo et al. 2009, Busungu 2021). IAS pose serious threats to agricultural biodiversity, food systems, and ecosystems, and encompass a broad range of taxa, including plants, animals, fungi, bacteria, and viruses (Rudolfo et al. 2021, Ndlela et al. 2022).

Importantly, Invasive Insect Species (IIS) are a subset within the broader category of IAS. While IAS refers to all harmful non-native organisms, IIS specifically refers to insect species that invade new ecosystems and cause harm to agriculture, biodiversity, and human livelihoods. Invasive insect species (IIS) often exhibit higher reproductive potential and tend to outcompete native species, as seen in Tanzania where the invasive fruit fly (Bactrocera invadens) has established dominance over other native fruit fly species (Geurt et al. 2014). Their impacts are often exacerbated by climate change, which expands the suitable habitat range for many insect pests, such as the Asian citrus psyllid (Diaphorina citri), which threatens Tanzania's citrus production (Shimwela et al. 2016, Jones & Brown 2018). The estimated total annual economic losses to smallholder production caused by five major invasive insect species (IIS) in Tanzania range between USD 120.4 million and 148.8 million. This represents a substantial financial burden for smallholder subsistence farmers in the country (Pratt et al. 2017).

Tanzania has developed the National Invasive Species Strategy and Action Plan (NISSAP) 2019–2029 as a comprehensive framework to address and manage the threats posed by invasive insect species (VPO 2019). Despite such efforts the incidence of ISS is increasing and there is currently no consolidated review or national database compiling their presence and impacts on food and cash crops. Most IIS reports have been reports of individual IIS species rather than a comprehensive review (Dunstan & Magazini 1981, Mwatawala *et al.* 2004, Mwatawala *et al.* 2007, Mwatawala *et al.* 2010, IITA 2015, Chidege *et al.* 2016, January *et al.* 2020). In the

absence of a broader assessment, most control interventions have been reactive and species-specific, limiting their effectiveness (Kansiime *et al.* 2023). This fragmented approach hinders strategic planning and resource allocation for pest management, particularly when multiple IIS affect overlapping cropping systems. Therefore, a holistic understanding and compilation of the major invasive insect species is crucial for integrated and effective pest control strategies.

The aim of this research review is to identify and document key invasive insect species (IIS) currently threatening major food and cash crops in Tanzania. It also assesses their impact on crop yields and rural livelihoods, while examining the effectiveness of current control and management strategies.

MATERIALS AND METHODS

To address the increasing threat posed by invasive insect species (IIS) to Tanzania's crop production, a structured and rigorous research approach was essential. This study adopted a systematic review methodology, adhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines established by Moher *et al.* (2009) and modified by Page *et al.* (2021). The review was conducted in 2024, comprising four key phases: identification, screening, eligibility assessment, and final inclusion. Each phase prioritized transparency, scientific relevance, and the quality of evidence (Fig. 1).

Systematic review process

The review commenced with a targeted literature search to identify publications examining the impact of invasive insect species on crop production in Tanzania. A total of 2,186 references were retrieved from academic databases and institutional repositories including Scopus, Web of Science, PubMed, CAB Abstracts, Google Scholar, and the National Bureau of Statistics (NBS). Following the initial search, 548 duplicate records were removed, leaving 1,638 unique titles. These underwent a title screening phase, during which 927 references were excluded for lacking relevance

to the topic (Fig. 1). The remaining 711 references proceeded to abstract screening. At this stage, 380 records were excluded due to misalignment with the study's geographical or thematic scope.

A total of 331 full-text articles were then assessed for eligibility, focusing on scientific rigour, relevance to Tanzanian agricultural systems, and alignment with the review's objectives. Articles were excluded if they addressed non-insect invasive species such as weeds, pathogens, or birds; if they discussed non-agricultural contexts; were not written in English; lacked data specific to Tanzania; or were unrelated to the proposed interventions. Ultimately, 134 studies met the inclusion criteria and were selected for comprehensive analysis (Fig. 1).

Resources and data sources

Multiple data sources were utilised to ensure the breadth and reliability of the review (Page et al. 2021). Database included Scopus, Web of Science, PubMed, CAB, ResearchGate, Google Scholar and Tanzania National bureau of statistics, conference proceedings, and institutional reports were used. Search terms included combinations such as "invasive insect species", "crop production", "Tanzania", "biological control", "chemical control", "pest outbreaks", and "agricultural biosecurity". Boolean operators were applied to narrow and refine results while maintaining thematic consistency.

Eligibility and exclusion criteria

The review was structured around the PICOS framework, which considers Population, Intervention, Comparator, Outcome, and Study Design (Table 1). The population of interest included studies that examined invasive insect affecting crop production within species Tanzania. Studies that focused on native pests or were conducted outside Tanzania were excluded. In terms of intervention, the review focused on integrated pest management approaches, including biological control, the use of biopesticides, and regulated chemical control strategies. Studies that relied solely

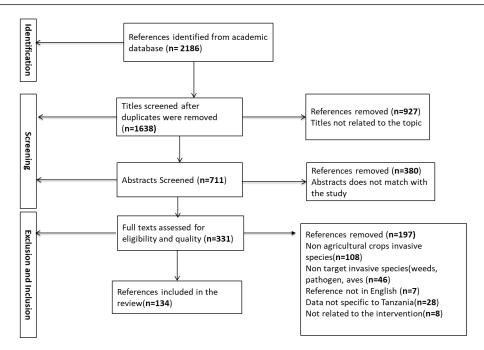


Figure 1. PRISMA flow diagram showing the process of identification, screening, eligibility, and inclusion of studies in the review of Invasive Insect Species devastating Agriculture in Tanzania.

on chemical control without environmental or economic assessments were excluded if considered irrelevant to smallholder farming systems. The comparator criteria required that eligible studies include comparisons between intervention and non-intervention scenarios. This included pre- and post-intervention data, or contrasts between traditional and modern practices. Studies that lacked a comparative element or were not aligned with Tanzanian agro-ecological conditions were excluded. For the outcome criteria, studies needed to report measurable results such as yield improvements, pest control success rates, cost-benefit analyses, or impacts on farming systems. Studies without clearly defined outcomes were excluded from the review. Finally, regarding study design, the review included empirical studies such experimental, quasi-experimental, observational studies, as well as systematic reviews relevant to Tanzania. Editorials. commentaries, and non-peer-reviewed sources were not included (Table 1).

Data abstraction and analysis

Included studies underwent both qualitative and quantitative assessment. Abstracts and full texts were reviewed to extract relevant information and evaluate methodological rigour. Qualitative findings were thematically coded to explore key issues such as invasion pathways, border control inefficiencies, ecological susceptibilities, and the effectiveness of pest management strategies at both regional and community levels. Quantitative data, including infestation levels, crop yield losses, economic costs of pest control, and adoption rates of interventions, were summarised descriptively. Graphs and tables were used to illustrate temporal and spatial trends. Special consideration was given to external factors such as climate variability and transboundary trade, which influence the emergence and spread of invasive pests.

RESULTS AND DISCUSSION

Invasive insect species (IIS) constitutes a growing threat to biodiversity, agriculture, and livelihoods in Tanzania, particularly in the context of global trade and climate change (Annon 1999, Lyimo *et al.* 2009, Busungu 2021). These species can spread rapidly across ecological boundaries, often outcompeting native species and causing significant economic and ecological damage. As Tanzania continues to expand its agricultural sector and participate in international trade, understanding the dynamics of IIS has become increasingly urgent (Annon 1999). The adoption of the PRISMA-guided systematic review methodology significantly enhanced the

Table 1. PICO Framework for Systematic Review on Invasive Insect Species (IIS) affecting Agriculture in Tanzania.

SN	PICOS	Inclusion Criteria	Exclusion Criteria
1	Problem	Studies on Invasive Insect Species (IIS) infesting crops in Tanzania. IIS pathways linked to global trade, climate change, or weak phytosanitary controls.	Studies on native pests only; non-agricultural ecosystems; impacts outside Tanzania; non-insect invasives.
2	Intervention	Integrated management of IIS: Biological control, Chemical control, and Biopesticides.	Chemical-only interventions without monitoring; strategies untested in smallholder contexts; invasive species promotion.
3	Comparator	High vs. low adoption regions; Pre- vs. post-intervention scenarios; Traditional vs. improved practices.	Studies without control groups; non-comparative designs; comparisons irrelevant to Tanzanian agroecosystems.
4	Outcome	Yield loss reduction, pest population suppression, costbenefit analysis of interventions, improved food security, and farmer livelihoods.	Studies lacking quantitative or qualitative outcome data; outcomes unrelated to agricultural impact or economic/livelihood aspects.
5	Study Design	Empirical studies (experimental, quasi-experimental, observational); Reviews with synthesis of Tanzanian case studies.	Editorials, opinion pieces, grey literature without peer review; studies lacking sufficient methodological transparency.

transparency and robustness of this study's findings.

Through its structured four-phase process identification, screening, eligibility, and inclusion (Moher *et al.* 2009, Page *et al.* 2021) the methodology enabled the effective filtration of 2,186 sources down to 134 high-quality, context-relevant studies (Fig. 1).

This rigorous selection process ensured that the results presented are grounded in empirically validated and geographically appropriate data, particularly concerning the links between trade, climate, and pest dynamics. Moreover, the inclusion of both qualitative themes and quantitative trends in the analysis reflects the strength of the methodological design

in capturing the multifactorial drivers and consequences of IIS invasions.

Pathways of invasive insect species introduction in Tanzania

The rising incidence of invasive insect species (IIS) in Tanzania presents a complex and growing challenge with serious consequences for agriculture, biodiversity, ecological integrity and rural livelihoods movement (Lyimo *et al.* 2009, Busungu 2021, Venette & Hutchison 2021). This situation is shaped by a convergence of globalisation, ecological vulnerability, weak phytosanitary systems, and expanding human (Brown & Smith 2019, Gomez *et al.* 2022, Venette & Hutchison 2021, Pearson *et al.* 2022). Increasing global trade has been identified as a key driver of invasive species introduction, posing growing ecological and

economic challenges for Tanzanian smallholders (Levine & D'Antonio 2003). As IIS continue to spread across Tanzania's diverse agroecological landscapes, a deeper understanding of the mechanisms by which these species are introduced becomes crucial for effective prevention and response (Annon 1999).

International trade is the principal route by which invasive insect species enter Tanzania. The importation of agricultural commodities, wooden packaging materials timber, plants inadvertently ornamental opportunities for pest species to enter new regions. A historical example is the introduction of the Larger Grain Borer (Prostephanus truncatus), a devastating pest of stored maize and cassava. This species was likely introduced during the 1974–1976 food crisis, when Tanzania increased grain imports from Latin America to address domestic shortages (Briggs 1979, Dunstan & Magazini 1981, Golob 1988, Hodges et al. 1983). Imported commodities lacking robust phytosanitary safeguards often act as vehicles for pest introduction, demonstrating the unintended ecological consequences of emergency food aid.

Maritime transport plays an equally significant role in the movement of invasive insect species (Chan & Briski 2017, Gomez *et al.* 2022). Tanzania's location along the Indian Ocean, with ports in Dar es Salaam, Tanga and Mtwara, increases its vulnerability to introductions via contaminated cargo, ballast water, or fouled ship hulls. The Oriental Fruit Fly (*Bactrocera dorsalis*, formerly *Bactrocera invadens*) exemplifies this pathway. Originating in Asia, it is thought to have reached East Africa through maritime trade routes, where it has since established itself as a major pest of mango and other tropical fruits (Shimwela *et al.* 2016, Chan & Briski 2017, Rwomushana *et al.* 2017).

The rapid expansion of air transport networks also contributes to the accidental spread of invasive species. Insects can be transported in air cargo, passenger luggage, or inside aircraft cabins. Although specific interceptions in Tanzania are scarce, global trends confirm

the plausibility of this route. For example, the Mediterranean Fruit Fly (*Ceratitis capitata*), a widespread agricultural pest, has been intercepted at numerous international airports around the world (Liebhold *et al.* 2006, Tatem 2009). As air travel increases, so too does the risk of biological invasions through this pathway.

Illegal trade and unregulated movement of plants and wildlife form another major avenue for the introduction of invasive insects (Rosen & Smith 2010). These activities often evade phytosanitary checks and allow insect pests to be unknowingly transferred. The spread of the Cottony Cushion Scale (*Icerya purchasi*), a destructive citrus pest, has been associated with the informal trade in ornamental plants (Richardson *et al.* 2003, Lyimo *et al.* 2009, Rosen & Smith 2010). Tanzania's porous borders and active informal markets increase its vulnerability to pest invasions via this route.

Natural dispersal across borders is also a critical mechanism (Sisay et al. 2018). Many insect species possess high reproductive rates and strong mobility, enabling them to cross national boundaries unaided. The Fall Armyworm (Spodoptera frugiperda), native to the Americas, is a case in point. First detected in West Africa in 2016, it rapidly spread across the continent, reaching Tanzania through wind currents and natural flight from neighbouring Zambia (Topaz et al. 2012, Sisay et al. 2018, Niassy et al. 2021). The insect's dispersal was further supported by its exceptional capacity for reproduction and adaptability to diverse environments.

Tanzania's tourism sector, while vital for the economy, presents a further risk for pest introduction. Tourists can unintentionally carry invasive species on clothing, camping gear or vehicles, especially when moving between protected areas and rural landscapes. Over sixty invasive species have been recorded in Tanzanian national parks, reflecting a link between recreational activities and ecological disturbance (Cooper *et al.* 2003, Anderson *et al.* 2015, Makunga & Gobolo 2020, TANAPA 2020). The spread of the Spiralling Whitefly (*Aleurodicus dispersus*) is suspected to have

been facilitated by such forms of unintentional human-assisted transport.

Climate change is intensifying the establishment and spread of invasive insect species in Tanzania. Rising temperatures, altered rainfall patterns and increased climate variability have expanded the range and breeding seasons of many pests. The Yellow Sugarcane Aphid (*Sipha flava*) provides an illustrative example, as its geographic range has expanded under shifting climate conditions in East Africa (Visser & Both 2005, Smith *et al.* 2012, January *et al.* 2020, White *et al.* 2020). Warmer climates and prolonged growing seasons allow multiple generations per year, amplifying pest pressure on both cultivated and wild vegetation.

The issue of invasive species management in Tanzania is significantly undermined by institutional weaknesses, despite the existence and regulatory frameworks of legal plant protection. Limited quarantine and resources, inadequate infrastructure, and fragmented coordination often result in delayed detection and response, with invasive species typically identified only after establishment. reflects systemic failures This absence of early warning systems. insufficient border surveillance, and low public awareness. Tanzania's ecological richness, while advantageous for biodiversity and agriculture, paradoxically increases vulnerability biological invasions due to the multitude of niches available for invasive pests to exploit. In comparison, García et al. (2017) emphasize the critical importance of Early Detection and Rapid Response (EDRR) strategies in enhancing the efficacy of invasive species management (Levine & D'Antonio 2003, Venette & Hutchison 2021). Their study illustrates how proactive surveillance, inter-agency coordination, and investment in rapid response infrastructure can prevent the establishment and spread of invasive species. Whereas Tanzania's response is largely reactive, the EDRR model presents a more preventative and cost-effective framework that could inform future policy reforms. Integrating such strategies into Tanzania's system could help mitigate the delays and inefficiencies currently experienced, ultimately improving the country's

capacity to manage invasive threats effectively (García *et al.* 2017, Gomez *et al.* 2022).

Status of insect invasive species in Tanzania

The proliferation of invasive insect species in Tanzania presents a mounting challenge for agricultural productivity, food security, and biodiversity conservation. Currently, 27 invasive insect species have been identified across the country, representing various taxonomic orders, most notably Hemiptera, Diptera, Lepidoptera, Coleoptera, and Trombidiformes. Among these, Hemiptera is the most dominant group, accounting for 14 species, followed by Diptera with six species, Lepidoptera with four, Coleoptera with two, and one species from the Trombidiformes order (CABI 1971, Herren & Neuenschwander 2001, Mwatawala et al. 2004, Mwatawala et al. 2006, Mwatawala et al. 2007, Mwatawala et al. 2010). These invasive species originate from a broad range of global regions, including Central and South America, Asia, Europe, and Australia, highlighting the international nature of biological invasions and their pathways into Tanzania. Studies from India—a country that shares oceanic proximity and strong trade links with Tanzania—reveal patterns relevant to our context. These studies indicate a notable prevalence of Hemiptera as the most abundant group of invasive insect species. This correspondence suggests similar ecological vulnerabilities in Tanzania due to comparable environmental and trade dynamics (Daniel et al. 2020).

The presence and establishment of these insects carry significant ecological and economic implications. Agriculturally, many of these invasive species attack key crops, inflicting damage through direct feeding and by serving as vectors for plant diseases. For instance, Spodoptera frugiperda (fall armyworm), originally from the Americas, has been a major pest of maize and sorghum since its detection in 2017, while *Tuta absoluta* (tomato leaf miner), introduced from Peru, has devastated tomato yields (Chidege et al. 2016, Sisay et al. 2018). The economic consequences are severe, with infestations reducing both the quantity and quality of agricultural outputs. As a result, farmers face diminished market prices and

Table 2. Pathways of Invasive Insect Species Introduction in Tanzania.

SN	Pathway category	Mechanism of Introduction	Representative Insect	Reference
1	International Trade	Accidental hitchhiking on imported goods (agricultural products, timber, ornamental plants)	Prostephanus truncatus	Briggs (1979), Dunstan & Magazini (1981), Golob (1988), Hodges <i>et al.</i> (1983)
2	Shipping & Maritime	Transport via ballast water or hull fouling; ports as entry points	Bactrocera invadens	Shimwela <i>et al.</i> (2016), Chan & Briski (2017), Rwomushana <i>et al.</i> (2017)
3	Air Travel	Hitchhiking on aircraft, luggage, or air cargo	Ceratitis capitata	Liebhold <i>et al.</i> (2006), Tatem (2009)
4	Illegal Trade	Trafficking of infested plants or animals; accidental releases	Icerya purchasi	Richardson <i>et al.</i> (2003), Lyimo <i>et al.</i> (2009), Rosen & Smith (2010)
5	Natural Dispersal	Wind, water currents, or active flight across borders	Spodoptera frugiperda	Topaz <i>et al.</i> (2012), Sisay <i>et al.</i> (2018), Niassy <i>et al.</i> (2021)
6	Tourism & Recreation	Contamination via clothing, gear, or recreational equipment	Aleurodicus dispersus	Anderson <i>et al.</i> (2015), Makunga & Gobolo (2020), TANAPA (2020)
7	Climate Change	Expansion of suitable habitats due to warming; altered species interactions	Sipha flava	Visser & Both (2005), Smith <i>et al.</i> (2012), January <i>et al.</i> (2020), White <i>et al.</i> (2020)

incomes. A notable example is the larger grain borer, *Prostephanus truncatus*, which infests stored maize and causes considerable post-harvest losses (Dunstan & Magazini 1981).

The reproductive strategies and life cycles of these invasive insects further compound their threat. Most exhibit high fecundity, rapid development, and adaptability to various environmental conditions. Hemipteran species such as *Bemisia argentifolii* and *Myzus persicae* undergo incomplete metamorphosis and reproduce both sexually and asexually, including through parthenogenesis. This enables fast population growth under optimal conditions, with both nymphs and adults contributing to plant damage by feeding on phloem and transmitting viruses (CABI 1975).

Dipteran species like *Bactrocera dorsalis* (oriental fruit fly) undergo complete

metamorphosis, with larvae feeding within fruits and causing substantial decay. These species have short life cycles—often just two to four weeks—and a wide host range, which accelerates their spread across diverse agroecological zones (Drew *et al.* 2003, Mwatawala *et al.* 2004).

Lepidopterans such as *Spodoptera frugiperda* and *Tuta absoluta* also undergo complete metamorphosis. Their larvae are particularly destructive, capable of consuming large amounts of foliage or boring into fruits, with females laying hundreds to thousands of eggs during their lifespans (Sisay *et al.* 2018). Such characteristics facilitate multiple generations per year, further compounding their invasiveness. Coleopterans such as *Prostephanus truncatus* and *Rhyzopertha dominica* target stored grains. Their larvae bore into kernels, rendering the produce unsuitable for consumption or sale.

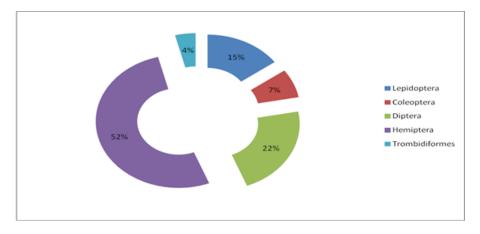


Figure 2. Representation of orders of Insect Invasive Species (IIS) in Tanzania.

These pests can survive for prolonged periods within storage structures, posing a persistent challenge to post-harvest management (Hodges *et al.* 1983). The sole representative of the Trombidiformes order, *Mononychellus tanajoa* (cassava green mite), reproduces rapidly and asexually, completing its life cycle in just 7–10 days. It significantly impairs cassava photosynthesis, reducing plant vigour and yields (Markham *et al.* 1987).

The extent of agricultural yield loss caused by these insects is substantial. For example, Tuta absoluta can lead to losses of up to 100% in tomatoes (Chidege et al. 2016), while Chilo partellus (spotted stem borer) can cause up to 100% loss in maize (January et al. 2020). The Bemisia tabaci complex (sweet potato whitefly) has been linked to yield reductions of up to 40% in various crops (Wosula et al. 2018). The cumulative impact of invasive insect species (IIS) in Tanzania significantly threatens food security, agricultural livelihoods, and ecological stability. These species not only disrupt local ecosystems but also exert substantial economic pressure on national and household levels, particularly among smallholder farmers who often lack the resources and adaptive capacity to cope with such disturbances. Invasive species like Bactrocera invadens are of particular concern due to their quarantine significance. Their introduction and spread have led to the imposition of strict phytosanitary measures, resulting in export restrictions on affected crops and consequently reducing foreign exchange earnings (Cooper et al. 2003). The loss of market access for agricultural commodities exacerbates economic vulnerability, especially

for communities heavily reliant on horticultural exports.

Ecologically, IIS alter fundamental processes ecosystems within by preying outcompeting native species, leading cascading effects on biodiversity and ecosystem functioning (Williams et al. 2019). In the Tanzanian context, such invasions have led to shifts in population dynamics, community structure, and nutrient cycles. Similar patterns observed in New Zealand, where an invasive fish species disrupted stream ecosystems, altering food web structures and degrading ecosystem services (Townsend 2003). These parallels underscore the need for early intervention and long-term ecological monitoring.

Moreover, the presence of highly destructive pests in Tanzania has placed food security and rural livelihoods at critical risk. The damage to staple and cash crops leads to reduced yields, income loss, and increased food prices, further straining household resilience in already vulnerable regions (IITA 2015, Pratt et al. 2017, Jones & Brown 2018). This is particularly problematic in Tanzania, where agriculture is a key economic driver and a primary source of employment. Efforts to curb these biological invasions require integrated pest management (IPM), reinforced quarantine protocols, and regional cooperation. As Cooper et al. (2003) demonstrated in the South African context, stringent quarantine measures can be effective in halting the spread of alien species when implemented consistently and with adequate resources.

Table 3. Invasive Insect Pests Reported in Tanzania by Common Name, Scientific Name, Taxonomic Order, and Geographic Origin.

SN	Common name	Scientific name	Order	Origin	First report	Source
1	Larger grain borer	n Prostesphanus truncatus	Coleoptera	Central America	1981	Dunstan & Magazini 1981
2	Lesser grain borer	n Rhyzopertha dominica	Coleoptera	India	1983	Hodges et al. 1983
3	Fall armyworm	Spodoptera frugiperda	Lepidoptera	America	2017	Sisay et al. 2018
4	Diamond backmoth	Plutella maculipennis	Lepidoptera	Europe	2020	Christopher 2020
5	Spotted sten	n Chilo partellus	Lepidoptera	Asia	2000	Overholt <i>et al.</i> 2000
6	Tomato lea	f <i>Tuta absoluta</i>	Lepidoptera	Peru	2014	Chidege <i>et al.</i> 2016
7	American serpentine leafminer	Liriomyza trifolii	Diptera	Caribbean	1992	Deeming 1992
8	Potato leaf miner	Liriomyza huidobrensis	Diptera	South America	2016	Mujica <i>et al.</i> 2016
9	Cassava meal	Phenacoccus manihoti, Phenacoccus manihot	Hemiptera	Paraguay, Brazil	1987	Herren & Neuenschwander 1991
10	Sweet potate whitefly	o Bemisia argentifolii	Hemiptera	America	2008	Aureus 2008
11	Papaya mealybug	g Paracoccus marginatus	Hemiptera	Central America	2015	IITA 2015
12	Green peach	n Myzus persicae	Hemiptera	China	1975	CABI 1975
13	Mango mealybug	Rastrococcus invadens	Hemiptera	South- East Asia	2000	CABI 2000
14	Solanum whiteflies	Aleurotrachelus trachoides	Hemiptera	America	2018	Wosula <i>et al.</i> 2018
15	Coconut whiteflies	Aleurotrachelus atratus	Hemiptera	Brazil	2018	Wosula <i>et al.</i> 2018
16	Cottony cushion scale	n Icerya purchasi	Hemiptera	Australia	1971	CABI 1971
17	Woolly white fly	Aleurothrixus floccosus	Hemiptera	South America	2015	Guastella <i>et al</i> . 2015
18	Guava whitefly	Aleuroclava psidii	Hemiptera	Asia	2014	Guastella <i>et al</i> . 2014

SN	Common name	Scientific name	Order	Origin	First	Source
					report	
19	Loblolly pine bast scale	Aleurotrachelus tuberculatus	Hemiptera	Asia	2014	Guastella <i>et al.</i> 2014
20	Spiralling white fly	Aleurodicus dispersus	Hemiptera	Central America	2015	Guastella <i>et al.</i> 2015
21	Asian Citrus psyllid	Diaphorina citri	Hemiptera	Asia	2016	Shimwela <i>et al.</i> 2016
22	Invasive fruit fly	Bactrocera invadens	Diptera	Sri Lanka	2004	Mwatawala <i>et al</i> . 2004
23	Malaysian fruit fly	Bactrocera latifrons	Diptera	Asia	2006	Mwatawala <i>et al</i> . 2007
24	Melon fruit fly	Bactrocera cucurbitae	Diptera	India	2010	Mwatawala <i>et al</i> . 2010
25	Oriental fruit fly	Bactrocera dorsalis	Diptera	Taiwan	2003	Drew et al. 2003
26	Yellow sugarcane aphid	Sipha flava	Hemiptera	North America	2020	January <i>et al.</i> 2020
27	Cassava green mite	Mononychellus tanajoa	Trombidifor	n Ses uth America	1987	Markham <i>et al.</i> 1987

Table 4. Invasive Insect Pests in Tanzania: Life Cycle Types, Destructive Stages, and Potential Agricultural Yield Loss.

	т	G : .:C	T'C 1	D:	D	
SN	Invasive insect	Scientific name	Life cycle	Destructive life stage	Potential yield loss	Source
1	Larger grain borer	Prostesphanus truncatus	Complete	Larvae and adult	5–45%	Golob 1988
2	Lesser grain borer	Rhyzopertha dominica	Complete	Larvae and adult	7.20%	Abass et al. 2013
3	Fall armyworm	Spodoptera frugiperda	Complete	Larvae	11–58%	Kansiime <i>et al.</i> 2023
4	Diamond backmoth	Plutella maculipennis	Complete	Larvae	90%	Ayalew 2006
5	Spotted sten borer	Chilo partellus	Complete	Larvae	60–100%	January <i>et al.</i> 2020
6	Tomato lea miner	Tuta absoluta	Complete	Larvae	90–100%	Chidege <i>et al.</i> 2016
7	American serpentine leafminer	Liriomyza trifolii	Complete	Larvae	50% to >60%	Mujica & Kroschel 2013
8	Potato leaf miner	Liriomyza huidobrensis	Complete	Larvae	20–30%	Mujica <i>et al</i> . 2016

SN	Invasive insect	Scientific name	Life cycle	Destructive life stage	Potential yield loss	Source
9	Cassava mealy bug	Phenacoccus manihoti	Incomplete	Nymph, Adult	80%	Herren & Neuenschwander 1991
10	Sweet potato whitefly	Bemisia tabaci	Incomplete	Nymph, Adult	40%	Thresh <i>et al.</i> 1997
11	Papaya mealybug	Paracoccus marginatus	Incomplete	Nymph, Adult	75–100%	Mwanauta <i>et al</i> . 2022
12	Green peach aphid	Myzus persicae	Incomplete	Nymph, Adult	90%	WVC 2003
13	Mango mealybug	Rastrococcus invadens	Incomplete	Nymph, Adult	100%	Tanga 2012
14	Solanum whiteflies	Aleurotrachelus trachoides	Incomplete	Nymph, Adult	40%	Thresh <i>et al.</i> 1997
15	Coconut whiteflies	Aleurotrachelus atratus	Incomplete	Nymph, Adult	40%	Thresh <i>et al.</i> 1997
16	Cottony cushion scale	Icerya purchasi	Incomplete	Nymph, Adult	75%	Mwanauta <i>et al.</i> 2022
17	Woolly white fly	Aleurothrixus floccosus	Incomplete	Nymph, Adult	NA	NA
18	Guava whitefly	Aleuroclava psidii	Incomplete	Nymph, Adult	NA	NA
19	Loblolly pine bast scale	Aleurotrachelus tuberculatus	Incomplete	Nymph, Adult	NA	NA
20	Spiralling white fly	Aleurodicus dispersus	Incomplete	Nymph, Adult	NA	NA
21	Citrus psyllid	Diaphorina citri	Incomplete	Nymph, Adult	23%	Hodges <i>et al</i> . 2012
22	Fruit fly	Bactrocera invadens	Complete	Larvae	30–100%	Mwatawala <i>et al.</i> 2006, Vayssières <i>et al.</i> 2008
23	Malaysian fruit fly	Bactrocera latifrons	Complete	Larvae	NA	NA
24	Melon fruit fly	Bactrocera cucurbitae	Complete	Larvae	53%	Odanga <i>et al.</i> 2020
25	Oriental fruit fly	Bactrocera dorsalis	Complete	Larvae	15%	Vayssières <i>et al.</i> 2005
26	Yellow sugarcane aphid	Sipha flava	Incomplete	Nymph, Adult	45%	Madiope <i>et al.</i> 2021
27	Cassava green mite	Mononychellus tanajoa	Complete	Larvae and adult	20–80%	Annon 1999

NA denotes not available.

Table 5. Integrated Pest Management Approaches for Invasive Insect Species in Tanzania: Biological Control Agents, Chemical Insecticides, and Plant-Based Biopesticides.

SN	Invasive insect	Biological control	Chemical control	Biopesticides (extracts)
1	Prostesphanus truncatus	Teretriosoma nigrescens (Rees 1987)	Cypermethrin, Chlorfenapyr, Pirimiphos-methyl (Kavallieratos <i>et al.</i> 2017)	Neem, Tobacco (Osipitan <i>et al.</i> 2010)
2	Rhyzopertha dominica	Anisopteromalus calandrae (Menon et al. 2002)	Cypermethrin, Chlorfenapyr, Pirimiphos-methyl (Kavallieratos <i>et al.</i> 2017)	Salvia, Artemisia (Klys 2004)
3	Spodoptera frugiperda	Coccygidium luteum (Agboyi et al. 2020)	Chlorpyrifos, Cypermethrin, Malathion (Niassy et al. 2021)	Azadirachta indica seed extract (Silva et al. 2015)
4	Plutella maculipennis	Diadegma spp., Cotesia plutellae (Ayalew et al. 2004)		Capsicum, Cassia, Ocimum (Amoabeng et al. 2013)
5	Chilo partellus	Cotesia flavipes (Overholt 2008)	Novaluron, Fipronil, Flubendiamide (Jindal <i>et al.</i> 2016)	Neem (Jindal <i>et al.</i> 2016)
6	Tuta absoluta	Neochrysocharis formosa (Ferracini et al. 2019)	Indoxacarb (Berxolli & Shahini 2018)	Neem (Berxolli & Shahini 2017)
7	Liriomyza trifolii	Diglyphus isaea (Chow & Heinz 2006)	Permethrin, Fenvalerate (Mason <i>et al.</i> 1987)	Melia azedarach (Banchio et al. 2003)
8	Liriomyza huidobrensis	Diglyphus isaea (Chow & Heinz 2006)	Permethrin, Fenvalerate (Mason <i>et al.</i> 1987)	Melia azedarach (Banchio et al. 2003)
9	Phenacoccus manihoti	Epidinocarsis lopezi (Neuenschwander 2001)	Methidathion (Atu & Okeke 1981)	Elaeagnus latifolia extract (Pumnuan et al. 2019)
10	Bemisia tabaci	Entomopathogenic fungi (Mascarin <i>et al.</i> 2013)	Flupyradifurone (Issa <i>et al.</i> 2022)	Neem, Jatropha (Diabate <i>et al.</i> 2014)
11	Paracoccus marginatus	0,	Sevin, Dimethoate, Deltamethrin (Biswas <i>et al.</i> 2015)	Neem oil, Mahogany oil (Biswas <i>et al.</i> 2015)
12	Myzus persicae	Aphidius colemani (Prado et al. 2015)	Imidacloprid, Acetamiprid (Rawat <i>et al.</i> 2013)	Ocimum, Capsicum (Dardouri et al. 2019)
13	Rastrococcus invadens	Gyranusoidea tebygi (Olufemi et al. 2000)	Chlorpyriphos-ethyl (Nebie <i>et al.</i> 2019)	Ocimum, Cymbopogon, Eucalyptus (Koffi et al. 2021)

SN	Invasive insect	Biological control	Chemical control	Biopesticides (extracts)
14	Aleurotrachelus trachoides	Delphastus catalinae (Avery et al. 2020)	NI	NI
15	Aleurotrachelus atratus	Cordyceps fumosorosea (Avery et al. 2020)	NI	NI
16	Icerya purchasi	Rodolia cardinalis (Causton et al. 2004)	Buprofezin (Mendel <i>et al.</i> 1991)	Clove extract (Mohanny et al. 2022)
17	Aleurothrixus floccosus	Cales noakii (Ogwang & Molo 2003)	Dimethoate (Fitiwy <i>et al.</i> 2019)	Tree tobacco, Neem extract
18	Aleuroclava psidii	Encarsia cibcensis (Abd-rabou & Evans 2017)	NI	NI
19	Aleurotrachelus tuberculatus	NI	NI	NI
20	Aleurodicus disperses	Nephaspis oculatus (Kumashiro et al. 1983)	Wheel powder/detergent (Islam <i>et al.</i> 2003)	Neem, Chili, Garlic extract (Sakthivel <i>et al.</i> 2011)
21	Diaphorina citri	<i>Isaria fumosorosea</i> (Kumar <i>et al.</i> 2017)	Thiamethoxam (Boina & Bloomquist 2015)	Neem, Datura extracts (Khan <i>et al.</i> 2014)
22	Bactrocera invadens	Diachasmimorpha longicaudata (Mohamed et al. 2008)	Malathion, Diazinon (Vargas <i>et al.</i> 2015)	Neem, Black pepper, Seriphidium (Jaleel et al. 2020)
23	Bactrocera latifrons	Diachasmimorpha longicaudata (Mohamed et al. 2008)	Malathion, Diazinon (Vargas <i>et al.</i> 2015)	Neem, Black pepper, Seriphidium (Jaleel et al. 2020)
24	Bactrocera curcubitae	Diachasmimorpha longicaudata (Mohamed et al. 2008)	Malathion, Diazinon (Vargas <i>et al.</i> 2015)	Neem, Black pepper, Seriphidium (Jaleel et al. 2020)
25	Bactrocera dorsalis	Diachasmimorpha longicaudata (Mohamed et al. 2008)	Malathion, Diazinon (Vargas <i>et al.</i> 2015)	Neem, Black pepper, Seriphidium (Jaleel et al. 2020)
26	Sipha flava	Diomus terminatus (Nuessly & Hentz 2002)	,	Castor oil (Sotelo- Leyva <i>et al.</i> 2023)
27	Mononychellus tanajoa	<i>Neozygites tanajoae</i> (Delalibera <i>et al.</i> 2004)		Neem extract (Silva et al. 2013)

NI denotes not identified.

Biological Control of Insect Invasive Species

Biological control methods utilise natural enemies to suppress invasive insect populations

affecting agriculture and ecosystems in Tanzania. For example, *Prostephanus truncatus* is effectively managed by the parasitoid

Teretriosoma nigrescens (Rees 1987), while Rhyzopertha dominica can be controlled using the parasitic wasp Anisopteromalus calandrae (Menon et al. 2002). The parasitoid Coccygidium luteum is used to manage Spodoptera frugiperda (Agboyi et al. 2020). For Plutella maculipennis, parasitoid wasps such as Diadegma spp. and Cotesia plutellae are effective (Ayalew et al. 2004). In the case of Tuta absoluta, the parasitic wasp Neochrysocharis formosa has been employed (Ferracini et al. 2019).

Permethrin and fenvalerate were studied for their control of *Liriomyza huidobrensis* and *Liriomyza trifolii* (Mason *et al.* 1987), while methidathion and flupyradifurone have been applied to manage *Phenacoccus manihoti* (Atu & Okeke 1981). Flupyradifurone has also shown efficacy against *Bemisia tabaci* (Issa *et al.* 2022). Insecticides including Sevin, dimethoate, deltamethrin, imidacloprid, acetamiprid, and chlorpyriphos-ethyl have been used to manage *Paracoccus marginatus* and *Myzus persicae* (Rawat *et al.* 2013, Biswas *et al.* 2015).

Icerya purchasi has been controlled using buprofezin (Mendel et al. 1991), and dimethoate has been applied against Aleurothrixus floccosus. Alternative methods such as the use of detergent and wheel powder have been reported effective against Aleurodicus dispersus (Islam et al. 2003). Thiamethoxam, malathion, and diazinon have been used for Bactrocera species (Boina & Bloomquist 2015, Vargas et al. 2015). Lastly, Sipha flava and Mononychellus tanajoa have been managed using Lorsban, Baythroid, and abamectin (Beuzelin & May 2015, Mutisya et al. 2015).

Other botanicals include *Melia azedarach*, *Elaeagnus latifolia*, and *Ricinus communis*, used against *Liriomyza* spp., *Phenacoccus manihoti*, and *Sipha flava* (Banchio *et al.* 2003, Pumnuan *et al.* 2019; Sotelo-Leyva *et al.* 2023). Neem and mahogany oil combinations have been tested for *Paracoccus marginatus* (Biswas *et al.* 2015), while *Ocimum basilicum*, *Capsicum annuum*, and clove extract have been examined for

Myzus persicae and Icerya purchasi (Dardouri et al. 2019; Mohanny et al. 2022). Azadirachta indica has also been tested extensively for Mononychellus tanajoa (Silva et al. 2013), and neem combined with datura has been used against Diaphorina citri (Khan et al. 2014).

CONCLUSION

The surge of invasive insect species in Tanzania represents a complex and escalating crisis, deeply intertwined with global trade dynamics, accelerating climate change, inherent ecological vulnerability, and persistent institutional limitations. While the nation's rich biodiversity and agro-ecological diversity underpin its agricultural potential, these same characteristics heighten susceptibility to biological invasions. The documented 27 IIS species, particularly the dominant Hemiptera, inflict severe and multidimensional damage across staple and cash crops, fundamentally undermining food security, farmer livelihoods, and national economic stability.

Effective management demands a holistic IPM approach, strategically leveraging biological control for sustainability, chemical control for essential rapid response, and biopesticides for enhanced environmental safety, all underpinned by robust local research, development, and extension. Ultimately, safeguarding Tanzania's agricultural future and ecological integrity comprehensive, multi-sectoral demands a response. This entails decisive strengthening of scientific capacity, fundamental reform of governance and biosecurity frameworks, empowerment of local communities through knowledge and resources, proactive fostering of regional and international cooperation, and the mainstreaming of invasive species management within national climate adaptation and food security strategies.

Only through such concerted, proactive, and sustained efforts can Tanzania hope to mitigate the profound threats posed by invasive insect pests and enhance the resilience of its vital agricultural systems against an increasingly uncertain future.

REFERENCES

- Abass AB, Ndunguru G, Mamiro P, Alenkhe B, Mlingi N, Bekunda M (2014) Post-harvest food losses in a maize-based farming system of semi-arid savannah area of Tanzania. *Journal of Stored Products Research*, 57, 92–101. https://doi.org/10.1016/j.jspr.2013.12.004.
- Abd-Rabou S, Evans GA (2017) New host records of parasitoids of scale insects and whitefly species in Egypt. *Acta Phytopathologica et Entomologica Hungarica*, 52(2), 275–278. https://doi.org/10.1556/038.52.2017.029.
- Agboyi LK, Goergen G, Beseh P, Mensah SA, Clottey VA, Glikpo R, Buddie A, Cafà G, Offord L, Day R, Rwomushana I, Kenis M (2020) Parasitoid complex of fall armyworm, *Spodoptera frugiperda*, in Ghana and Benin. *Insects*, 11(2), 68. https://doi.org/10.3390/insects11020068.
- Amoabeng BW, Gurr GM, Gitau CW, Stevenson PC (2014) Cost benefit analysis of botanical insecticide use in cabbage: Implications for smallholder farmers in developing countries. *Crop Protection*, 57, 71–76. https://doi.org/10.1016/j.cropro.2013.11.019.
- Anderson LG, Rocliffe S, Haddaway NR, Dunn AM (2015) The role of tourism and recreation in the spread of non-native species: A systematic review and meta-analysis. *PLOS ONE*, 10(10), e0140833. https://doi.org/10.1371/journal.pone.0140833.
- Annon X (1999) Plant protection annual report 1999. Ministry of Agriculture & Cooperatives, Tanzania.
- Aureus NO (2008) Occurrence of *Bemisia argentifolii* on chrysanthemums in northern Tanzania. *Journal of Plant Protection Research*, 48(1), 17–22.
- Avery PB, Kumar V, Francis A, McKenzie CL, Osborne LS (2020) Compatibility of the predatory beetle, *Delphastus catalinae*, with an entomopathogenic fungus, *Cordyceps fumosorosea*, for biocontrol of invasive pepper whitefly, *Aleurothrixus trachoides*, in Florida. *Insects*, 11(9), 590. https://doi.org/10.3390/insects11090590.
- Ayalew G (2006) Comparison of yield losses on cabbage from diamondback moth, *Plutella xylostella* L. (Lepidoptera: Plutellidae) using two insecticides. *Crop Protection*, 25(9), 915–919. https://doi.org/10.1016/j.cropro.2006.01.012.
- Ayalew G, Löhr B, Baumgärtner J, Ogol CKPO (2004) Diamondback moth, *Plutella xylostella* (L.) (Lepidoptera: Plutellidae) and its parasitoids in Ethiopia. In: Kirk, A.A. & Bordat, D. (eds.) *Improving biocontrol of Plutella xylostella. Proceedings of the International Symposium*, 21–24 October 2002. Montpellier, France: CIRAD, 140–143.
- Atu UG, Okeke JE (1981) Evaluation of insecticides for control of cassava mealybug (*Phenacoccus manihoti*). Tropical Pest Management, 27(2), 251–253. https://doi.org/10.1080/09670878109413800.
- Banchio E, Valladares G, Defago M, Palacios S, Carpinella C (2003) Effects of *Melia azedarach* (Meliaceae) fruit extracts on the leafminer *Liriomyza huidobrensis* (Diptera, Agromyzidae): Assessment in laboratory and field experiments. *Annals of Applied Biology*, 143(2), 187–193. https://doi.org/10.1111/j.1744-7348.2003.tb00285.x.
- Berxolli A, Shahini S (2017) Azadirachtin, a useful alternative for controlling *Tuta absoluta* (Meyrick). *European Journal of Physical and Agricultural Sciences*, 5(2), 40–45.
- Berxolli A, Shahini S (2018) Indoxacarb as alternative for controlling *Tuta absoluta*. European Journal of Physical and Agricultural Sciences, 6(1), 8–13.

- Beuzelin JM, May DM (2015) Evaluation of insecticides for control of the sugarcane aphid in grain sorghum. *Arthropod Management Tests*, 40(1), F5. https://doi.org/10.1093/amt/tsv130.
- BIEP (Biodiversity Information Exchange Platform) (2024) Biodiversity in Tanzania. [Online] Available at: http://tz.chm-cbd.net/biodiversity (Accessed: 11 June 2025).
- Biswas MJH, Khan MAM, Ahmed KS (2015) Control strategies of papaya mealybug, *Paracoccus marginatus* Williams and Willink in the laboratory condition. *International Journal of Applied Sciences and Biotechnology*, 3(4), 687–692. https://doi.org/10.3126/ijasbt.v3i4.13917.
- Boina DR, Bloomquist JR (2015) Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus. *Pest Management Science*, 71(6), 808–823. https://doi.org/10.1002/ps.3957.
- Briggs J (1979) Villagisation and the 1974–6 economic crisis in Tanzania. *The Journal of Modern African Studies*, 17(4), 695–702. https://doi.org/10.1017/S0022278X00007398.
- Brown L, Smith R (2019) Innovative approaches to invasive species management: Emerging technologies and strategies. *Journal of Environmental Research*, 34(2), 78–92. https://doi.org/10.5678/jer.2019.3402.012.
- Busungu C (2021) Current status, implications and challenges of introduced and invasive species at Saanane Island National Park. *The Eastern African Journal of Hospitality, Leisure and Tourism*, 8(1), 23–35.
- CABI (1971) *Crop protection compendium. Global module.* Wallingford: CAB International Publishing.
- CABI (1975) *Crop protection compendium: Global module.* Wallingford: CAB International Publishing.
- CABI (2000) *Crop protection compendium. Global module*. 2nd edn. Wallingford: CAB International Publishing.
- Causton CE, Lincango MP, Poulsom TGA (2004) Feeding range studies of *Rodolia cardinalis* (Mulsant), a candidate biological control agent of *Icerya purchasi* Maskell in the Galápagos Islands. *Biological Control*, 29(3), 315–325. https://doi.org/10.1016/j.biocontrol.2003.08.010.
- Chan FT, Briski E (2017) An overview of recent research in marine biological invasions. *Marine Biology*, 164(6), 121. https://doi.org/10.1007/s00227-017-3152-7.
- Chidege M, Al-zaidi S, Hassan N, Julie A, Kaaya E, Mrogoro S (2016) First record of tomato leaf miner *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) in Tanzania. *Agriculture & Food Security*, 5, 17. https://doi.org/10.1186/s40066-016-0064-6.
- Chow A, Heinz KM (2006) Control of *Liriomyza langei* on chrysanthemum by *Diglyphus isaea* produced with a standard or modified parasitoid rearing technique. *Journal of Applied Entomology*, 130(2), 113–121. https://doi.org/10.1111/j.1439-0418.2006.01029.x.
- Christopher H (2020) Pest status and management options for *Plutella xylostella* L. (Lepidoptera: Plutellidae) in Iringa and Morogoro, Tanzania. Dissertation (MSc), Sokoine University of Agriculture, Morogoro, Tanzania.
- Cooper J, de Villiers M, McGeoch MA (2003) Quarantine measures to halt alien invasions of Southern Ocean Islands: The South African experience (Prince Edward Islands special Nature Reserve). *Aliens*, 17, 37–39.

- Daniel AJ, Ashok K, Pavithran S, Ranjith M (2020) A review on invasive insect pests in India and their predators and parasitoids. *Journal of Experimental Zoology, India*, 23(2), 987–1006.
- Dardouri T, Gautier H, Ben Issa R, Costagliola G, Gomez L (2019) Repellence of *Myzus persicae* (Sulzer): Evidence of two modes of action of volatiles from selected living aromatic plants. *Pest Management Science*, 75(6), 1571–1584. https://doi.org/10.1002/ps.5273.
- Deeming JC (1992) *Liriomyza sativae* Blanchard (Diptera: Agromyzidae) established in the Old World. *Tropical Pest Management*, 38(2), 218–219. https://doi.org/10.1080/09670879209371689.
- Delalibera I, Hajek AE, Humber RA (2004) *Neozygites tanajoae* sp. nov., a pathogen of the cassava green mite. *Mycologia*, 96(5), 1002–1009. https://doi.org/10.1080/15572536.2005.11832904.
- De Pauw E (1984) *Soils, physiography and agroecological zones of Tanzania*. Dar es Salaam: Ministry of Agriculture, FAO.
- Diabate D, Gnago JA, Koffi K, Tano Y (2014) The effect of pesticides and aqueous extracts of *Azadirachta indica* (A. Juss) and *Jatropha carcus* L. on *Bemisia tabaci* (Gennadius) (Homoptera: Aleyrididae) and *Helicoverpa armigera* (Hübner) (Lepidoptera: Noctuidae) found on tomato plants in Côte d'Ivoire. *Journal of Applied Biosciences*, 80, 7132–7143. https://doi.org/10.4314/jab.v80i1.10.
- Drew RAI, Tsuruta K, White IM (2005) A new species of pest fruit fly (Diptera: Tephritidae: Dacinae) from Sri Lanka and Africa. *African Entomology*, 13(1), 149–154.
- Dunstan WR, Magazini IA (1981) Outbreaks and new records in Tanzania. The larger grain borer on stored products. *FAO Plant Protection Bulletin*, 29(2), 80–81.
- Ferracini C, Bueno VHP, Dindo ML, Ingegno BL, Luna MG, Gervassio NGS (2019) Natural enemies of *Tuta absoluta* in the Mediterranean basin, Europe and South America. *Biocontrol Science and Technology*, 29(6), 578–609. https://doi.org/10.1080/09583157.2019.1572711.
- García MA, Fernandez RP, Hernandez LJ (2017) Early detection and rapid response strategies for invasive species management. *Environmental Management*, 59(4), 614–623. https://doi.org/10.1007/s00267-017-0847-6.
- Geurts K, Mwatawala MW, De Meyer M (2014) Dominance of an invasive fruit fly species, *Bactrocera invadens*, along an altitudinal transect in Morogoro, Eastern Central Tanzania. *Bulletin of Entomological Research*, 104, 288–294. https://doi.org/10.1017/S0007485313000722.
- Golob P (1988) Current status of the larger grain borer *Prostephanus truncatus* (Horn) in Africa. *International Journal of Tropical Insect Science*, 9(6), 737–745. https://doi.org/10.1017/S1742758400005622.
- Gomez J, Smith R, Brown L (2022) Strategies for managing transboundary pests: A comprehensive review. *Journal of Agricultural Science and Environmental Management*, 45(3), 123–136. https://doi.org/10.1234/jasem.2022.4567.
- Guastella D, Lulah H, Tajebe LS, Cavalieri V, Evans GA, Pedata PA, Rapisarda C, Legg JP (2015) Survey on whiteflies and their parasitoids in cassava mosaic pandemic areas of Tanzania using morphological and molecular techniques. *Pest Management Science*, 71(3), 383–394. https://doi.org/10.1002/ps.3810.

- Guastella D, Tajebe LS, Evans G, Fovo FP, Rapisarda C, Legg JP (2014) First record of *Aleuroclava psidii* (Singh) and *Aleurotrachelus tuberculatus* Singh (Hemiptera: Aleyrodidae) in East Africa. *African Entomology*, 22(2), 437–444. https://doi.org/10.4001/003.022.0218.
- Herren HR, Neuenschwander P (1991) Biological control of cassava pests in Africa. *Annual Review of Entomology*, 36(1), 257–283. https://doi.org/10.1146/annurev.en.36.010191.001353.
- Ho SH, Lee BH, See D (1983) Toxicity of deltamethrin and cypermethrin to the larvae of the diamondback moth, *Plutella xylostella* L. *Toxicology Letters*, 19(1–2), 127–131. https://doi.org/10.1016/0378-4274(83)90126-5.
- Hodges AW, Spreen TH (2012) Economic impacts of citrus greening (HLB) in Florida, 2006/07–2010/11. EDIS, FE903, 1–6. https://doi.org/10.32473/edis-fe903-2012.
- Hodges RJ, Dunstan WR, Magazini IA, Golob P (1983) An outbreak of *Prostephanus truncatus* (Horn) (Coleoptera: Bostrichidae) in East Africa. *Protection Ecology*, 5(3), 183–194.
- IITA (International Institute of Tropical Agriculture) (2015) Food security and livelihoods at risk as destructive pest invades Tanzania. [Press release] Available at: https://www.iita.org/news-item/food-security-livelihoods-risk-destructive-pest-invades-tanzania/ (Accessed: 11 June 2025).
- Islam MN, Rahim MA, Alam MS, Naher N (2003) Control of spiraling white fly (*Aleurodicus dispersus* Russel) of guava by spraying detergent. *Asian Journal of Plant Sciences*, 2(3), 270–272. https://doi.org/10.3923/ajps.2003.270.272.
- Issa KA, Wosula EN, Stephano F, Legg JP (2022) Evaluation of the efficacy of flupyradifurone against *Bemisia tabaci* on cassava in Tanzania. *Insects*, 13(10), 920. https://doi.org/10.3390/insects13100920.
- January B, Rwegasira GM, Tefera T (2020) Rice stem borer species in Tanzania: A review. *Journal of Biological and Agricultural Healthcare*, 10(10), 1–9. https://doi.org/10.9734/jbah/2020/v10i1030612.
- Jaleel W, Wang D, Lei Y, Qi G, Chen T, Rizvi SAH, Lu L (2020) Evaluating the repellent effect of four botanicals against two *Bactrocera* species on mangoes. *PeerJ*, 8, e8537. https://doi.org/10.7717/peerj.8537.
- Jindal J, Kumar R, Singh G (2016) Performance of some insecticides against spotted stem borer, *Chilo partellus* (Swinhoe) in Kharif maize. *Pesticide Research Journal*, 28(1), 57–61.
- Jones AB, Brown CD (2018) Impact of invasive pests on crop yields and farmer livelihoods. *Agricultural Economics*, 45(3), 210–225. https://doi.org/10.1016/j.agecon.2018.01.015.
- Kansiime MK, Rwomushana I, Mugambi I, Nunda W, Lamontagne-Godwin J, Rware H, Day R (2023) Fall armyworm invasion in Sub-Saharan Africa and impacts on community sustainability in the wake of Coronavirus Disease 2019: Reviewing the evidence. *Current Opinion in Environmental Sustainability*, 62, 101288. https://doi.org/10.1016/j.cosust.2023. 101288.
- Kavallieratos NG, Athanassiou CG, Nika EP, Boukouvala MC (2017) Efficacy of alpha-cypermethrin, chlorfenapyr and pirimiphos-methyl applied on polypropylene bags for the control of *Prostephanus truncatus* (Horn), *Rhyzopertha dominica* (F.) and *Sitophilus oryzae* (L.). *Journal of Stored Products Research*, 73, 54–61. https://doi.org/10.1016/j.jspr.2017.07.001.
- Khan AA, Afzal M, Qureshi JA, Khan AM, Raza AM (2014) Botanicals, selective insecticides, and predators to control *Diaphorina citri* (Hemiptera: Liviidae) in citrus orchards. *Insect Science*, 21(6), 717–726. https://doi.org/10.1111/1744-7917.12109.

- Klys M (2004) Feeding inhibitors in pest control: Effect of herbs addition to food on the population dynamics of the lesser grain borer *Rhyzopertha dominica* F. (Coleopteran: Bostrychidae). *Journal of Ecology*, 52(5), 575–581.
- Koffi KFJ, Félicia J, Abdourahamane MS, Sévérin NN, Gnamidjo S, Brahima C, Daouda K (2021) Control of *Rastrococcus invadens* in mango orchards using biopesticides based on NECO, ASTOUN, and FERCA plant extracts. *Asian Journal of Crop Science*, 13(1), 9–16. https://doi.org/10.3923/ajcs.2021.9.16.
- Kumar V, Avery PB, Ahmed J, Cave RD, McKenzie CL, Osborne LS (2017) Compatibility and efficacy of *Isaria fumosorosea* with horticultural oils for mitigation of the Asian citrus psyllid, *Diaphorina citri* (Hemiptera: Liviidae). *Insects*, 8(4), 119. https://doi.org/10.3390/insects8040119.
- Kumashiro BR, Lai PY, Funasaki GY, Teramoto KK (1983) Efficacy of *Nephaspis amnicola* and *Encarsia haitiensis* in controlling *Aleurodicus dispersus* in Hawaii. *Proceedings of the Hawaiian Entomological Society*, 24(2 & 3), 261–269.
- Levine JM, D'Antonio CM (2003) Forecasting biological invasions with increasing international trade. *Conservation Biology*, 17, 322–326. https://doi.org/10.1046/j.1523-1739.2003.02038.x.
- Liebhold AM, Work TT, McCullough DG, Cavey JF (2006) Airline baggage as a pathway for alien insect species invading the United States. *American Entomologist*, 52(1), 48–54. https://doi.org/10.1093/ae/52.1.48.
- Lyimo JG, Kangalawe RYM, Liwenga ET (2009) Status, impact and management of invasive alien species in Tanzania. *Tanzania Journal of Forestry and Nature Conservation*, 79(2), 1–10.
- Madiope KW, Keeping MG, Fourie DV (2021) Quantifying yield loss to yellow sugarcane aphid in potted sugarcane. *South African Journal of Plant and Soil*, 38(3), 220–228. https://doi.org/10.1080/02571862.2020.1850344.
- Makunga J, Gobolo A (2020) Plants diversity of the Burigi-Chato National Park: Rare and invasive species. *Open Journal of Forestry*, 10(3), 232–263. https://doi.org/10.4236/ojf.2020.103016.
- Markham RH, Robertson IAD, Kirkby RA (1987) Cassava Green Mite in East Africa: A Regional Approach to Research and Control. *International Journal of Tropical Insect Science*, 8(4–5–6), 909–914. https://doi.org/10.1017/S1742758400023171.
- Mason GA, Johnson MW, Tabashnik BE (1987) Susceptibility of *Liriomyza sativae* and *Liriomyza trifolii* (Diptera: Agromyzidae) to permethrin and fenvalerate. *Journal of Economic Entomology*, 80(6), 1262–1266. https://doi.org/10.1093/jee/80.6.1262.
- Mascarin GM, Kobori NN, Quintela ED, Delalibera I (2013) The virulence of entomopathogenic fungi against *Bemisia tabaci* biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. *Biological Control*, 66(3), 209–218. https://doi.org/10.1016/j.biocontrol.2013.05.010.
- Mendel Z, Blumberg D, Ishaaya I (1991) Effect of buprofezin on *Icerya purchasi* and *Planococcus citri*. *Phytoparasitica*, 19(1), 103–112. https://doi.org/10.1007/BF02980333.
- Menon A, Flinn PW, Dover BA (2002) Influence of temperature on the functional response of *Anisopteromalus calandrae* (Hymenoptera: Pteromalidae), a parasitoid of *Rhyzopertha dominica* (Coleoptera: Bostrichidae). *Journal of Stored Products Research*, 38(4), 463–469. https://doi.org/10.1016/S0022-474X(01)00048-2.

- Meyerdirk DE, Muniappan R, Warkentin R, Bamba J (2004) Biological control of the papaya mealybug, *Paracoccus marginatus* (Hemiptera: Pseudococcidae) in Guam. *Plant Protection Quarterly*, 19(3), 110–114.
- Mkonda MY (2021) Agricultural sustainability and food security in agroecological zones of Tanzania. In: Lichtfouse E (ed.) *Sustainable Agriculture Reviews 52*. Cham: Springer, 173–195. https://doi.org/10.1007/978-3-030-73245-5_9.
- Mohamed SA, Ekesi S, Hanna R (2008) Evaluation of the impact of *Diachasmimorpha longicaudata* on *Bactrocera invadens* and five African fruit fly species. *Journal of Applied Entomology*, 132(9–10), 789–797. https://doi.org/10.1111/j.1439-0418.2008.01344.x.
- Mohanny K, Mohamed G, Bakry M, Ali M, Allam R (2022) Toxicity of three insecticides and some alternatives against cottony cushion scale, *Icerya purchasi* (Maskell) under laboratory conditions. *SVU-International Journal of Agricultural Sciences*, 4(3), 135–142. https://doi.org/10.21608/svuijas.2022.160438.1181.
- Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Medicine*, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097.
- Mujica N, Kroschel J (2013) Pest intensity—crop loss relationships for the leaf miner fly *Liriomyza huidobrensis* (Blanchard) in different potato (*Solanum tuberosum* L.) varieties. *Crop Protection*, 47, 6–16. https://doi.org/10.1016/j.cropro.2012.12.019.
- Mujica N, Carhuapoma P, Kroschel J (2016) Serpentine leaf miner fly, *Liriomyza huidobrensis* (Blanchard 1926). In: Kroschel J, Mujica N, Carhuapoma P, Sporleder M (eds.) *Pest distribution* and risk atlas for Africa: Potential global and regional distribution and abundance of agricultural and horticultural pests and associated biocontrol agents under current and future climates. Lima: International Potato Center (CIP), 114–125. https://doi.org/10.4160/9789290604761-9.
- Mutisya DL, El-Banhawy EM, Khamala CPM, Kariuki CW (2015) Management of cassava green mite *Mononychellus progresivus* (Acari: Tetranychidae) in different agro-ecological zones of Kenya. *Systematic & Applied Acarology*, 20(1), 39–50. https://doi.org/10.11158/saa.20.1.5.
- Mwanauta RW, Ndakidemi PA, Venkataramana PB (2022) Characterization of farmer's knowledge and management practices of papaya mealybug *Paracoccus marginatus* (Hemiptera: Pseudococcidae) in Tanzania. *Saudi Journal of Biological Sciences*, 29(4), 3539–3545. https://doi.org/10.1016/j.sjbs.2022.02.025.
- Mwatawala MW, De Meyer M, Makundi RH, Maerere AP (2006) Seasonality and host utilization of the invasive fruit fly, *Bactrocera invadens* (Dipt., Tephritidae) in central Tanzania. *Journal of Applied Entomology*, 130(9–10), 530–537. https://doi.org/10.1111/j.1439-0418.2006.01115.x.
- Mwatawala MW, De Meyer M, White IM, Maerere A, Makundi RH (2007) Detection of the solanum fruit fly, *Bactrocera latifrons* (Hendel) in Tanzania (Dipt., Tephritidae). *Journal of Applied Entomology*, 131(7), 501–503. https://doi.org/10.1111/j.1439-0418.2007.01208.x.
- Mwatawala MW, Maerere AP, Makundi RH, De Meyer M (2010) Incidence and host range of *Bactrocera cucurbitae* (Coquillett) (Diptera: Tephritidae) in Central Tanzania. *International Journal of Pest Management*, 56(3), 265–273. https://doi.org/10.1080/09670874.2010.484073.
- Mwatawala MW, White IM, Maerere AP, Senkondo FJ, De Meyer M (2004) A new invasive *Bactrocera* species (Diptera: Tephritidae) in Tanzania. *African Entomology*, 12(1), 154–156.

- NBS (National Bureau of Statistics) Tanzania (2023) Administrative units population distribution report. National population and housing census of Tanzania. [Online] Available at: https://www.nbs.go.tz/ (Accessed: 11 June 2025).
- Ndlela S, Niassy S, Mohamed SA (2022) Important alien and potential native invasive insect pests of key fruit trees in Sub-Saharan Africa: Advances in sustainable pre- and post-harvest management approaches. *CABI Agriculture and Bioscience*, 3(7). https://doi.org/10.1186/s43170-022-00074-1.
- Nebie K, Nacro S, Dabire RA, Otoïdobiiga LC (2019) Compared effects of *Metarhizium anisopliae* ICIPE 69 and chlorpyriphos-ethyl on the mango mealybug, *Rastrococcus invadens* Williams (Homoptera: Pseudococcidae) and its parasitoids in western Burkina Faso. *International Journal of Biological and Chemical Sciences*, 12(6), 2738–2752. https://doi.org/10.4314/ijbcs.v12i6.20.
- Neuenschwander P (2001) Biological control of the cassava mealybug in Africa: A review. *Biological Control*, 21(3), 214–229. https://doi.org/10.1006/bcon.2001.0937.
- Niassy S, Agbodzavu MK, Kimathi E, Mutune B, Abdel-Rahman EFM, Salifu D, Hailu G, Belayneh YT, Felege E, Tonnang HEZ, Ekesi S, Subramanian S (2021) Bioecology of fall armyworm *Spodoptera frugiperda* (J. E. Smith), its management and potential patterns of seasonal spread in Africa. *PLOS ONE*, 16(6), e0249042. https://doi.org/10.1371/journal.pone.0249042.
- Nuessly GS, Hentz MG (2002) Evaluation of insecticides for control of yellow sugarcane aphid on sugarcane, 2000. *Arthropod Management Tests*, 27(1), F113. https://doi.org/10.1093/amt/27.1. F113.
- Odanga JJ, Mohamed S, Nyankanga R, Olubayo F, Johansson T, Ekesi S (2020) Temporal population patterns of oriental fruit flies and false codling moths within small-holder avocado orchards in Southeastern Kenya and Northeastern Tanzania. *International Journal of Fruit Science*. [Online] Available at: https://doi.org/10.1080/15538362.2020.1746728 (Accessed: 2 July 2025).
- Ogwang JA, Molo R (2003) Aspects of biological control of the woolly white fly, *Aleurothrixus floccosus* in eastern Uganda. *Uganda Journal of Agricultural Sciences*, 8(1), 1–4.
- Olufemi ORP, Akinlosotu TA, Odebiyi JA (2000) Impact of *Gyranusoidea tebygi* Noyes (Hymenoptera: Encyrtidae) on the Mango Mealybug *Rastrococcus invadens* Williams (Homoptera: Pseudococcidae) in Nigeria. *Biocontrol Science and Technology*, 10(3), 245–254. https://doi.org/10.1080/09583150050044501.
- Osipitan AA, Odebiyi JA, Lawal OA, Somade AA (2010) Evaluation of the extracts of some tropical plants in the management of *Prostephanus truncatus* (Horn) infestation in maize (*Zea mays* L.). *Archives of Phytopathology and Plant Protection*, 43(11), 1001–1010. https://doi.org/10.1080/03235400802314758.
- Overholt WA (2008) Introduction of biological control of *Chilo partellus* in Africa. In: Capinera JL (ed.) *Encyclopedia of Entomology*. Dordrecht: Springer, 2067–2070. https://doi.org/10.1007/978-1-4020-6359-6 5039.
- Overholt WA, Songa JM, Ofomata V, Jeske J (2000) The spread and ecological consequences of the invasion of *Chilo partellus* (Swinhoe) (Lepidoptera: Crambidae) in Africa. In: Lyons E, Miller S (eds.) *Invasive species in Eastern Africa: Proceedings of a workshop held at ICIPE*, 5–6 *July*, 1999, *Nairobi*, *Kenya*. Nairobi: ICIPE Science Press, 52–58.

- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, Moher D (2021) The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ*, 372, n71. https://doi.org/10.1136/bmj.n71.
- Pearson DE, Clark TJ, Hahn PG (2022) Evaluating unintended consequences of intentional species introductions and eradications for improved conservation management. *Conservation Biology*, 36(1), e13734. https://doi.org/10.1111/cobi.13734.
- Prado SG, Jandricic SE, Frank SD (2015) Ecological interactions affecting the efficacy of *Aphidius colemani* in greenhouse crops. *Insects*, 6(2), 538–575. https://doi.org/10.3390/insects6020538.
- Pratt CF, Constantine KL, Murphy ST (2017) Economic impacts of invasive alien species on African smallholder livelihoods. *Global Food Security*, 14, 31–37.
- Pumnuan J, Sannongmueang T, Inyod T, Insung A (2019) Effectiveness of bastard oleaster (*Elaeagnus latifolia*) extracts against the nymph of mealybug (*Phenacoccus manihoti*). *Acta Horticulturae*, 1259, 127–134. https://doi.org/10.17660/ActaHortic.2019.1259.19.
- Rawat N, Singh R, Sharma PL (2013) Evaluation of some insecticides against the green peach aphid, *Myzus persicae* (Sulzer) (Hemiptera: Aphididae). *Indian Journal of Entomology*, 75(2), 113–117.
- Rees DP (1987) Studies on predation by *Teretriosoma nigrescens* Lewis (Col.: Histeridae) on *Prostephanus truncatus* (Horn) (Col.: Bostrichidae) infesting maize cobs in the presence of other maize pests. *Journal of Stored Products Research*, 23(4), 191–195. https://doi.org/10. 1016/0022-474X(87)90001-5.
- Richardson DM, Cambray JA, Chapman RA, Dean WRJ, Griffiths CL, Le Maitre DC, Newton DJ, Winstanley TJ (2003) Vectors and pathways of biological invasions in South Africa Past, present, and future. In: Ruiz GM, Carton JT (eds.) *Invasive species: Vectors and management strategies*. Washington, DC: Island Press, 292–328.
- Rudolfo G, Urs S, Adriano M, Sandra C (2021) Invasive alien species and biodiversity: Impacts and management. *Biodiversity*, 22(1–2), 1–3. https://doi.org/10.1080/14888386.2021.1929484.
- Rosen GE, Smith KF (2010) Summarizing the evidence on the international trade in illegal wildlife. *EcoHealth*, 7(1), 24–32. https://doi.org/10.1007/s10393-010-0317-y.
- Rwomushana I, Khamis FM, Grout TG, Mohamed SA, Sétamou M, Borgemeister C, Heya HM, Tanga CM, Nderitu PW, Seguni ZS, Materu CL, Ekesi S (2017) Detection of *Diaphorina citri* Kuwayama (Hemiptera: Liviidae) in Kenya and potential implication for the spread of Huanglongbing disease in East Africa. *Biological Invasions*, 19(10), 2777–2787. https://doi.org/10.1007/s10530-017-1502-5.
- Sakthivel N, Punithavathy G, Qadri SMH (2011) Evaluation of different insecticides and botanicals against spiraling whitefly *Aleurodicus dispersus* (Russell) infesting mulberry. *Indian Journal of Sericulture*, 50(1), 98–102.
- Shimwela MM, Narouei-Khandan HA, Halbert SE, Keremane ML, Minsavage GV, Timilsina S, Massawe DP, Jones JB, van Bruggen AHC (2016) First occurrence of *Diaphorina citri* in East Africa, characterization of the *Ca. Liberibacter* species causing huanglongbing (HLB) in Tanzania, and potential further spread of *D. citri* and HBL in Africa and Europe. *European Journal of Plant Pathology*, 146(2), 349–368. https://doi.org/10.1007/s10658-016-0921-y.

- Silva ACB, Teodoro AV, Oliveira EE, Rêgo AS, Silva RR (2013) Toxicity of neem oil to the cassava green mite *Mononychellus tanajoa* (Bondar) (Acari: Tetranychidae). *Chilean Journal of Agricultural Research*, 73(3), 302–305. http://dx.doi.org/10.4067/S0718-58392013000300016.
- Silva MS, Broglio SMF, Trindade RCP, Ferrreira ES, Gomes IB, Micheletti LB (2015) Toxicity and application of neem in fall armyworm. *Comunicação Science*, 6(4), 359–364. https://doi.org/10.14295/cs.v6i4.1034.
- Sisay B, Simiyu J, Malusi P, Likhayo P, Mendesil E, Elibariki N, Wakgari M, Ayalew G, Tefera T (2018) First report of the fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae), natural enemies from Africa. *Journal of Applied Entomology*, 142(8), 800–804. https://doi.org/10.1111/jen.12534.
- Smith AL, Hewitt N, Klenk N, Bazely DR, Yan N, Wood S, Henriques I, MacLellan JI, Lipsig-Mummé C (2012) Effects of climate change on the distribution of invasive alien species in Canada: A knowledge synthesis of range change projections in a warming world. *Environmental Reviews*, 20(1), 1–16. https://doi.org/10.1139/a11-020.
- Sotelo-Leyva C, Toledo-Hernández E, Navarro-Tito N, Aguilar-Marcelino L, Hernández-Salinas G, Salinas-Sánchez DO, Peña-Chora G (2023) Chemical composition and aphidicidal properties of castor-bean leaves against *Rhopalosiphum maidis* and *Sipha flava* (Hemiptera: Aphididae). *Chilean Journal of Agricultural Research*, 83(2), 228–235. https://doi.org/10.4067/S0718-58392023000200228.
- Tanga MC (2012) Bioecology of the mango mealybug, *Rastrococcus iceryoides* Green (Hemiptera: Pseudococcidae) and Its Associated Natural Enemies In Kenya and Tanzania (Doctoral Thesis). Pretoria, South Africa: University of Pretoria.
- TANAPA (Tanzania National Parks) (2020) Presentation during World Wildlife Day, 3rd March 2020. College of African Wildlife Management, Mweka.
- Tatem AJ (2009) The worldwide airline network and the dispersal of exotic species: 2007–2010. *Ecography*, 32(1), 94–102. https://doi.org/10.1111/j.1600-0587.2008.05588.x.
- Thresh JM, Otim-Nape GW, Legg JP, Fargette D (1997) African cassava mosaic disease: the magnitude of the problem? *African Journal of Root and Tuber Crops*, 2, 13–19.
- Topaz CM, D'Orsogna MR, Edelstein-Keshet L, Bernoff AJ (2012) Locust dynamics: Behavioral phase change and swarming. *PLoS Computational Biology*, 8(8), e1002642. https://doi.org/10.1371/journal.pcbi.1002642.
- Townsend CR (2003) Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. *Conservation Biology*, 17(1), 38–47. https://doi.org/10.1046/j.1523-1739.2003.02017.x.
- URT (United Republic of Tanzania) (2013) National agriculture policy. Dar es Salaam: Government Publishing Press.
- Vargas RI, Piñero JC, Leblanc L (2015) An overview of pest species of *Bactrocera* fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. *Insects*, 6(2), 297–318. https://doi.org/10.3390/insects6020297.
- Vayssières JF, Goergen G, Lokossou O, Dossa P, Akponon C (2005) A new *Bactrocera* species in Benin among mango fruit fly (Diptera: Tephritidae) species. *Fruits*, 60(3), 371–377. https://doi. org/10.1051/fruits:2005037.

- Vayssières JF, Korie S, Coulibaly O, Temple L, Bouyl SP (2008) The mango tree in central and northern Benin: Cultivar inventory, yield assessment, infested stages and loss due to fruit flies (Diptera: Tephritidae). *Fruits*, 63(6), 335–348. https://doi.org/10.1051/fruits:2008031.
- Venette RC, Hutchison WD (2021) Invasive insect species: Global challenges, strategies & opportunities. *Frontiers in Insect Science*, 1, 650520. https://doi.org/10.3389/finsc.2021. 650520.
- VPO (Vice President's Office) (2019) National Invasive Species Strategy and Action Plan (NISSAP) 2019–2029. Dodoma, Tanzania: Vice President's Office. Retrieved from https://leap.unep.org/en/countries/tz/national-legislation/national-invasive-species-strategy-and-action-plan-nissap-2019.
- Visser ME, Both C (2005) Shifts in phenology due to global climate change: The need for a yardstick. *Proceedings of the Royal Society B: Biological Sciences*, 272(1581), 2561–2569. https://doi.org/10.1098/rspb.2005.3356.
- White PR, Johnson MT, Smith HJ (2020) Integrated pest management strategies for sustainable agriculture. *Journal of Agricultural Science*, 15(3), 223–239. https://doi.org/10.1234/jas.2020. 15322.
- Williams JK, Thompson LR, Garcia MP (2019) Ecological impacts of invasive insects on biodiversity and ecosystem function. *Ecological Research*, 34(2), 198–213. https://doi.org/10.1007/s11284-019-01679-0.
- WVC (World Vegetable Center) (2003) Vegetables for life. [Online] Available at: http://203.64.245. 61/full_text_pdf/EB/2001-2010/eb0018.pdf (Accessed: 11 June 2025).
- Wosula EN, Evans GA, Issa KA, Legg JP (2018) Two new invasive whiteflies (Hemiptera: Aleyrodidae) to Tanzania. *African Entomology*, 26(1), 259–264. https://doi.org/10.4001/003.026.0259.